Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Populus homeobox gene ARBORKNOX1 reveals overlapping mechanisms regulating the shoot apical meristem and the vascular cambium.

Identifieur interne : 003D09 ( Main/Exploration ); précédent : 003D08; suivant : 003D10

The Populus homeobox gene ARBORKNOX1 reveals overlapping mechanisms regulating the shoot apical meristem and the vascular cambium.

Auteurs : Andrew T. Groover [États-Unis] ; Shawn D. Mansfield ; Stephen P. Difazio ; Gayle Dupper ; Joseph R. Fontana ; Ryan Millar ; Yvonne Wang

Source :

RBID : pubmed:16927204

Descripteurs français

English descriptors

Abstract

Secondary growth is supported by a dividing population of meristematic cells within the vascular cambium whose daughter cells are recruited to differentiate within secondary phloem and xylem tissues. We cloned a Populus Class 1 KNOX homeobox gene, ARBORKNOX1 (ARK1), which is orthologous to Arabidopsis SHOOT MERISTEMLESS (STM). ARK1 is expressed in the shoot apical meristem (SAM) and the vascular cambium, and is down-regulated in the terminally differentiated cells of leaves and secondary vascular tissues that are derived from these meristems. Transformation of Populus with either ARK1 or STM over-expression constructs results in similar morphological phenotypes characterized by inhibition of the differentiation of leaves, internode elongation, and secondary vascular cell types in stems. Microarray analysis showed that 41% of genes up-regulated in the stems of ARK1 over-expressing plants encode proteins involved in extracellular matrix synthesis or modification, including proteins involved in cell identity and signaling, cell adhesion, or cell differentiation. These gene expression differences are reflected in alterations of cell wall biochemistry and lignin composition in ARK1 over-expressing plants. Our results suggest that ARK1 has a complex mode of action that may include regulating cell fates through modification of the extracellular matrix. Our findings support the hypothesis that the SAM and vascular cambium are regulated by overlapping genetic programs.

DOI: 10.1007/s11103-006-0059-y
PubMed: 16927204


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Populus homeobox gene ARBORKNOX1 reveals overlapping mechanisms regulating the shoot apical meristem and the vascular cambium.</title>
<author>
<name sortKey="Groover, Andrew T" sort="Groover, Andrew T" uniqKey="Groover A" first="Andrew T" last="Groover">Andrew T. Groover</name>
<affiliation wicri:level="2">
<nlm:affiliation>Institute of Forest Genetics, Pacific Southwest Research Station, USDA Forest Service, 1100 West Chiles Rd., Davis, CA 95616, USA. agroover@fs.fed.us</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Institute of Forest Genetics, Pacific Southwest Research Station, USDA Forest Service, 1100 West Chiles Rd., Davis, CA 95616</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mansfield, Shawn D" sort="Mansfield, Shawn D" uniqKey="Mansfield S" first="Shawn D" last="Mansfield">Shawn D. Mansfield</name>
</author>
<author>
<name sortKey="Difazio, Stephen P" sort="Difazio, Stephen P" uniqKey="Difazio S" first="Stephen P" last="Difazio">Stephen P. Difazio</name>
</author>
<author>
<name sortKey="Dupper, Gayle" sort="Dupper, Gayle" uniqKey="Dupper G" first="Gayle" last="Dupper">Gayle Dupper</name>
</author>
<author>
<name sortKey="Fontana, Joseph R" sort="Fontana, Joseph R" uniqKey="Fontana J" first="Joseph R" last="Fontana">Joseph R. Fontana</name>
</author>
<author>
<name sortKey="Millar, Ryan" sort="Millar, Ryan" uniqKey="Millar R" first="Ryan" last="Millar">Ryan Millar</name>
</author>
<author>
<name sortKey="Wang, Yvonne" sort="Wang, Yvonne" uniqKey="Wang Y" first="Yvonne" last="Wang">Yvonne Wang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16927204</idno>
<idno type="pmid">16927204</idno>
<idno type="doi">10.1007/s11103-006-0059-y</idno>
<idno type="wicri:Area/Main/Corpus">003D46</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003D46</idno>
<idno type="wicri:Area/Main/Curation">003D46</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003D46</idno>
<idno type="wicri:Area/Main/Exploration">003D46</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The Populus homeobox gene ARBORKNOX1 reveals overlapping mechanisms regulating the shoot apical meristem and the vascular cambium.</title>
<author>
<name sortKey="Groover, Andrew T" sort="Groover, Andrew T" uniqKey="Groover A" first="Andrew T" last="Groover">Andrew T. Groover</name>
<affiliation wicri:level="2">
<nlm:affiliation>Institute of Forest Genetics, Pacific Southwest Research Station, USDA Forest Service, 1100 West Chiles Rd., Davis, CA 95616, USA. agroover@fs.fed.us</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Institute of Forest Genetics, Pacific Southwest Research Station, USDA Forest Service, 1100 West Chiles Rd., Davis, CA 95616</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mansfield, Shawn D" sort="Mansfield, Shawn D" uniqKey="Mansfield S" first="Shawn D" last="Mansfield">Shawn D. Mansfield</name>
</author>
<author>
<name sortKey="Difazio, Stephen P" sort="Difazio, Stephen P" uniqKey="Difazio S" first="Stephen P" last="Difazio">Stephen P. Difazio</name>
</author>
<author>
<name sortKey="Dupper, Gayle" sort="Dupper, Gayle" uniqKey="Dupper G" first="Gayle" last="Dupper">Gayle Dupper</name>
</author>
<author>
<name sortKey="Fontana, Joseph R" sort="Fontana, Joseph R" uniqKey="Fontana J" first="Joseph R" last="Fontana">Joseph R. Fontana</name>
</author>
<author>
<name sortKey="Millar, Ryan" sort="Millar, Ryan" uniqKey="Millar R" first="Ryan" last="Millar">Ryan Millar</name>
</author>
<author>
<name sortKey="Wang, Yvonne" sort="Wang, Yvonne" uniqKey="Wang Y" first="Yvonne" last="Wang">Yvonne Wang</name>
</author>
</analytic>
<series>
<title level="j">Plant molecular biology</title>
<idno type="ISSN">0167-4412</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Cell Wall (chemistry)</term>
<term>Cell Wall (genetics)</term>
<term>Cloning, Molecular (MeSH)</term>
<term>DNA, Complementary (chemistry)</term>
<term>DNA, Complementary (genetics)</term>
<term>Gene Expression Regulation, Developmental (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Homeodomain Proteins (genetics)</term>
<term>In Situ Hybridization (MeSH)</term>
<term>Lignin (analysis)</term>
<term>Meristem (genetics)</term>
<term>Meristem (growth & development)</term>
<term>Meristem (ultrastructure)</term>
<term>Microscopy, Electron, Scanning (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Oligonucleotide Array Sequence Analysis (methods)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Leaves (growth & development)</term>
<term>Plant Leaves (ultrastructure)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Structures (genetics)</term>
<term>Plant Structures (growth & development)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Populus (genetics)</term>
<term>Populus (growth & development)</term>
<term>Populus (ultrastructure)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN complémentaire (composition chimique)</term>
<term>ADN complémentaire (génétique)</term>
<term>Analyse de séquence d'ADN (MeSH)</term>
<term>Clonage moléculaire (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Feuilles de plante (croissance et développement)</term>
<term>Feuilles de plante (ultrastructure)</term>
<term>Hybridation in situ (MeSH)</term>
<term>Lignine (analyse)</term>
<term>Microscopie électronique à balayage (MeSH)</term>
<term>Méristème (croissance et développement)</term>
<term>Méristème (génétique)</term>
<term>Méristème (ultrastructure)</term>
<term>Paroi cellulaire (composition chimique)</term>
<term>Paroi cellulaire (génétique)</term>
<term>Phylogenèse (MeSH)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (génétique)</term>
<term>Populus (ultrastructure)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines à homéodomaine (génétique)</term>
<term>Régulation de l'expression des gènes au cours du développement (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Structures de plante (croissance et développement)</term>
<term>Structures de plante (génétique)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Séquençage par oligonucléotides en batterie (méthodes)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Lignin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>DNA, Complementary</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Lignine</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Cell Wall</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>ADN complémentaire</term>
<term>Paroi cellulaire</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Méristème</term>
<term>Populus</term>
<term>Structures de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cell Wall</term>
<term>DNA, Complementary</term>
<term>Homeodomain Proteins</term>
<term>Meristem</term>
<term>Plant Proteins</term>
<term>Plant Structures</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Meristem</term>
<term>Plant Leaves</term>
<term>Plant Structures</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN complémentaire</term>
<term>Méristème</term>
<term>Paroi cellulaire</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Protéines à homéodomaine</term>
<term>Structures de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Oligonucleotide Array Sequence Analysis</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Séquençage par oligonucléotides en batterie</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Meristem</term>
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Cloning, Molecular</term>
<term>Gene Expression Regulation, Developmental</term>
<term>Gene Expression Regulation, Plant</term>
<term>In Situ Hybridization</term>
<term>Microscopy, Electron, Scanning</term>
<term>Molecular Sequence Data</term>
<term>Phylogeny</term>
<term>Plants, Genetically Modified</term>
<term>Sequence Analysis, DNA</term>
<term>Sequence Homology, Amino Acid</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="fr">
<term>Analyse de séquence d'ADN</term>
<term>Clonage moléculaire</term>
<term>Données de séquences moléculaires</term>
<term>Feuilles de plante</term>
<term>Hybridation in situ</term>
<term>Microscopie électronique à balayage</term>
<term>Méristème</term>
<term>Phylogenèse</term>
<term>Populus</term>
<term>Régulation de l'expression des gènes au cours du développement</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Séquence d'acides aminés</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Secondary growth is supported by a dividing population of meristematic cells within the vascular cambium whose daughter cells are recruited to differentiate within secondary phloem and xylem tissues. We cloned a Populus Class 1 KNOX homeobox gene, ARBORKNOX1 (ARK1), which is orthologous to Arabidopsis SHOOT MERISTEMLESS (STM). ARK1 is expressed in the shoot apical meristem (SAM) and the vascular cambium, and is down-regulated in the terminally differentiated cells of leaves and secondary vascular tissues that are derived from these meristems. Transformation of Populus with either ARK1 or STM over-expression constructs results in similar morphological phenotypes characterized by inhibition of the differentiation of leaves, internode elongation, and secondary vascular cell types in stems. Microarray analysis showed that 41% of genes up-regulated in the stems of ARK1 over-expressing plants encode proteins involved in extracellular matrix synthesis or modification, including proteins involved in cell identity and signaling, cell adhesion, or cell differentiation. These gene expression differences are reflected in alterations of cell wall biochemistry and lignin composition in ARK1 over-expressing plants. Our results suggest that ARK1 has a complex mode of action that may include regulating cell fates through modification of the extracellular matrix. Our findings support the hypothesis that the SAM and vascular cambium are regulated by overlapping genetic programs.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16927204</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>11</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0167-4412</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>61</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2006</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Plant molecular biology</Title>
<ISOAbbreviation>Plant Mol Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>The Populus homeobox gene ARBORKNOX1 reveals overlapping mechanisms regulating the shoot apical meristem and the vascular cambium.</ArticleTitle>
<Pagination>
<MedlinePgn>917-32</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Secondary growth is supported by a dividing population of meristematic cells within the vascular cambium whose daughter cells are recruited to differentiate within secondary phloem and xylem tissues. We cloned a Populus Class 1 KNOX homeobox gene, ARBORKNOX1 (ARK1), which is orthologous to Arabidopsis SHOOT MERISTEMLESS (STM). ARK1 is expressed in the shoot apical meristem (SAM) and the vascular cambium, and is down-regulated in the terminally differentiated cells of leaves and secondary vascular tissues that are derived from these meristems. Transformation of Populus with either ARK1 or STM over-expression constructs results in similar morphological phenotypes characterized by inhibition of the differentiation of leaves, internode elongation, and secondary vascular cell types in stems. Microarray analysis showed that 41% of genes up-regulated in the stems of ARK1 over-expressing plants encode proteins involved in extracellular matrix synthesis or modification, including proteins involved in cell identity and signaling, cell adhesion, or cell differentiation. These gene expression differences are reflected in alterations of cell wall biochemistry and lignin composition in ARK1 over-expressing plants. Our results suggest that ARK1 has a complex mode of action that may include regulating cell fates through modification of the extracellular matrix. Our findings support the hypothesis that the SAM and vascular cambium are regulated by overlapping genetic programs.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Groover</LastName>
<ForeName>Andrew T</ForeName>
<Initials>AT</Initials>
<AffiliationInfo>
<Affiliation>Institute of Forest Genetics, Pacific Southwest Research Station, USDA Forest Service, 1100 West Chiles Rd., Davis, CA 95616, USA. agroover@fs.fed.us</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mansfield</LastName>
<ForeName>Shawn D</ForeName>
<Initials>SD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>DiFazio</LastName>
<ForeName>Stephen P</ForeName>
<Initials>SP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dupper</LastName>
<ForeName>Gayle</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fontana</LastName>
<ForeName>Joseph R</ForeName>
<Initials>JR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Millar</LastName>
<ForeName>Ryan</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Yvonne</ForeName>
<Initials>Y</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>AY755413</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Plant Mol Biol</MedlineTA>
<NlmUniqueID>9106343</NlmUniqueID>
<ISSNLinking>0167-4412</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018076">DNA, Complementary</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018398">Homeodomain Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002473" MajorTopicYN="N">Cell Wall</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003001" MajorTopicYN="N">Cloning, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018076" MajorTopicYN="N">DNA, Complementary</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018507" MajorTopicYN="N">Gene Expression Regulation, Developmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018398" MajorTopicYN="N">Homeodomain Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017403" MajorTopicYN="N">In Situ Hybridization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018519" MajorTopicYN="N">Meristem</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008855" MajorTopicYN="N">Microscopy, Electron, Scanning</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020411" MajorTopicYN="N">Oligonucleotide Array Sequence Analysis</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018514" MajorTopicYN="N">Plant Structures</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2005</Year>
<Month>10</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2006</Year>
<Month>03</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>8</Month>
<Day>24</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>11</Month>
<Day>9</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>8</Month>
<Day>24</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16927204</ArticleId>
<ArticleId IdType="doi">10.1007/s11103-006-0059-y</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Curr Biol. 2003 Oct 14;13(20):1768-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14561401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2003 Oct 8;51(21):6178-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14518941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2002 Sep 17;12(18):1557-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12372247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2003 Dec;54(393):2691-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14585821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 1996 Jan;122(1):87-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8565856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2003 Sep 1;17(17):2088-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12923061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1991 Mar 21;350(6315):241-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1672445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2001 Mar 1;15(5):581-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11238378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1996 Jan 4;379(6560):66-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8538741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1998 Dec 11;95(6):805-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9865698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2003 Sep;130(17):3941-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12874117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11812-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11562463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 May;22(3):223-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10849340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2002 Jul;129(13):3207-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12070095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Jan;119(1):153-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9880356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jul;132(3):1283-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12857810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Jan;14 (1):165-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11826306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Oct;133(2):482-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14555777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2005 May;10(5):210-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15882652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1996 Aug;8(8):1277-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8776897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Sep;16(9):2278-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15316113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 1998 Aug;125(16):3027-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9671577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Oct;16(10):2614-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15377758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Apr;38(2):276-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15078330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2002 Jul;129(13):3195-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12070094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1993 May;7(5):787-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7684007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Apr;134(4):1742-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15051863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2004 May;55(3):433-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15604691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Jun;42(5):618-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15918878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1992 Dec;20(6):1203-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1463857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Aug;15(8):1717-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12897247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Sep 21;101(38):13951-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15353603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 1999 May;21(5):432-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10376014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 1998 Apr;20(4):280-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9619098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Dec;133(4):1911-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14645732</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Difazio, Stephen P" sort="Difazio, Stephen P" uniqKey="Difazio S" first="Stephen P" last="Difazio">Stephen P. Difazio</name>
<name sortKey="Dupper, Gayle" sort="Dupper, Gayle" uniqKey="Dupper G" first="Gayle" last="Dupper">Gayle Dupper</name>
<name sortKey="Fontana, Joseph R" sort="Fontana, Joseph R" uniqKey="Fontana J" first="Joseph R" last="Fontana">Joseph R. Fontana</name>
<name sortKey="Mansfield, Shawn D" sort="Mansfield, Shawn D" uniqKey="Mansfield S" first="Shawn D" last="Mansfield">Shawn D. Mansfield</name>
<name sortKey="Millar, Ryan" sort="Millar, Ryan" uniqKey="Millar R" first="Ryan" last="Millar">Ryan Millar</name>
<name sortKey="Wang, Yvonne" sort="Wang, Yvonne" uniqKey="Wang Y" first="Yvonne" last="Wang">Yvonne Wang</name>
</noCountry>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Groover, Andrew T" sort="Groover, Andrew T" uniqKey="Groover A" first="Andrew T" last="Groover">Andrew T. Groover</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003D09 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003D09 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:16927204
   |texte=   The Populus homeobox gene ARBORKNOX1 reveals overlapping mechanisms regulating the shoot apical meristem and the vascular cambium.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:16927204" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020